Approximating Large Numbers
The identities of logarithms can be used to approximate large numbers. Note that logb(a) + logb(c) = logb(ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 232,582,657 − 1. To get the base-10 logarithm, we would multiply 32,582,657 by log10(2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 109,808,357 × 100.09543 ≈ 1.25 × 109,808,357.
Similarly, factorials can be approximated by summing the logarithms of the terms.
Read more about this topic: List Of Logarithmic Identities
Famous quotes containing the words large and/or numbers:
“What large children we are
here. All over I grow most tall
in the best ward. Your business is people,
you call at the madhouse, an oracular
eye in our nest.”
—Anne Sexton (19281974)
“Our religion vulgarly stands on numbers of believers. Whenever the appeal is madeno matter how indirectlyto numbers, proclamation is then and there made, that religion is not. He that finds God a sweet, enveloping presence, who shall dare to come in?”
—Ralph Waldo Emerson (18031882)