List of Logarithmic Identities - Approximating Large Numbers

Approximating Large Numbers

The identities of logarithms can be used to approximate large numbers. Note that logb(a) + logb(c) = logb(ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 232,582,657 − 1. To get the base-10 logarithm, we would multiply 32,582,657 by log10(2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 109,808,357 × 100.09543 ≈ 1.25 × 109,808,357.

Similarly, factorials can be approximated by summing the logarithms of the terms.

Read more about this topic:  List Of Logarithmic Identities

Famous quotes containing the words large and/or numbers:

    I don’t say ‘tis impossible for an impudent man not to rise in the world, but a moderate merit with a large share of impudence is more probable to be advanced than the greatest qualifications without it.
    Mary Wortley, Lady Montagu (1689–1762)

    The principle of majority rule is the mildest form in which the force of numbers can be exercised. It is a pacific substitute for civil war in which the opposing armies are counted and the victory is awarded to the larger before any blood is shed. Except in the sacred tests of democracy and in the incantations of the orators, we hardly take the trouble to pretend that the rule of the majority is not at bottom a rule of force.
    Walter Lippmann (1889–1974)