List of Integrals of Inverse Trigonometric Functions - Arctangent Function Integration Formulas

Arctangent Function Integration Formulas

\int\arctan(a\,x)\,dx= x\arctan(a\,x)- \frac{\ln\left(a^2\,x^2+1\right)}{2\,a}+C
\int x\arctan(a\,x)\,dx= \frac{x^2\arctan(a\,x)}{2}+ \frac{\arctan(a\,x)}{2\,a^2}-\frac{x}{2\,a}+C
\int x^2\arctan(a\,x)\,dx= \frac{x^3\arctan(a\,x)}{3}+ \frac{\ln\left(a^2\,x^2+1\right)}{6\,a^3}-\frac{x^2}{6\,a}+C
\int x^m\arctan(a\,x)\,dx= \frac{x^{m+1}\arctan(a\,x)}{m+1}- \frac{a}{m+1}\int \frac{x^{m+1}}{a^2\,x^2+1}\,dx\quad(m\ne-1)

Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    Literature does not exist in a vacuum. Writers as such have a definite social function exactly proportional to their ability as writers. This is their main use.
    Ezra Pound (1885–1972)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.
    Hermann Hesse (1877–1962)