List of Integrals of Inverse Trigonometric Functions - Arctangent Function Integration Formulas

Arctangent Function Integration Formulas

\int\arctan(a\,x)\,dx= x\arctan(a\,x)- \frac{\ln\left(a^2\,x^2+1\right)}{2\,a}+C
\int x\arctan(a\,x)\,dx= \frac{x^2\arctan(a\,x)}{2}+ \frac{\arctan(a\,x)}{2\,a^2}-\frac{x}{2\,a}+C
\int x^2\arctan(a\,x)\,dx= \frac{x^3\arctan(a\,x)}{3}+ \frac{\ln\left(a^2\,x^2+1\right)}{6\,a^3}-\frac{x^2}{6\,a}+C
\int x^m\arctan(a\,x)\,dx= \frac{x^{m+1}\arctan(a\,x)}{m+1}- \frac{a}{m+1}\int \frac{x^{m+1}}{a^2\,x^2+1}\,dx\quad(m\ne-1)

Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    Any translation which intends to perform a transmitting function cannot transmit anything but information—hence, something inessential. This is the hallmark of bad translations.
    Walter Benjamin (1892–1940)

    The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.
    Claude Lévi-Strauss (b. 1908)

    It is sentimentalism to assume that the teaching of life can always be fitted to the child’s interests, just as it is empty formalism to force the child to parrot the formulas of adult society. Interests can be created and stimulated.
    Jerome S. Bruner (20th century)