List of Integrals of Inverse Trigonometric Functions - Arcsine Function Integration Formulas

Arcsine Function Integration Formulas

\int\arcsin(a\,x)\,dx= x\arcsin(a\,x)+ \frac{\sqrt{1-a^2\,x^2}}{a}+C
\int x\arcsin(a\,x)\,dx= \frac{x^2\arcsin(a\,x)}{2}- \frac{\arcsin(a\,x)}{4\,a^2}+ \frac{x\sqrt{1-a^2\,x^2}}{4\,a}+C
\int x^2\arcsin(a\,x)\,dx= \frac{x^3\arcsin(a\,x)}{3}+ \frac{\left(a^2\,x^2+2\right)\sqrt{1-a^2\,x^2}}{9\,a^3}+C
\int x^m\arcsin(a\,x)\,dx= \frac{x^{m+1}\arcsin(a\,x)}{m+1}\,-\, \frac{a}{m+1}\int \frac{x^{m+1}}{\sqrt{1-a^2\,x^2}}\,dx\quad(m\ne-1)


\int\arcsin(a\,x)^2\,dx= -2\,x+x\arcsin(a\,x)^2+ \frac{2\sqrt{1-a^2\,x^2}\arcsin(a\,x)}{a}+C
\int\arcsin(a\,x)^n\,dx= x\arcsin(a\,x)^n\,+\, \frac{n\sqrt{1-a^2\,x^2}\arcsin(a\,x)^{n-1}}{a}\,-\, n\,(n-1)\int\arcsin(a\,x)^{n-2}\,dx
\int\arcsin(a\,x)^n\,dx= \frac{x\arcsin(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\, \frac{\sqrt{1-a^2\,x^2}\arcsin(a\,x)^{n+1}}{a\,(n+1)}\,-\, \frac{1}{(n+1)\,(n+2)}\int\arcsin(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)


Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    We are thus able to distinguish thinking as the function which is to a large extent linguistic.
    Benjamin Lee Whorf (1897–1934)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.
    Hermann Hesse (1877–1962)