List of Integrals of Inverse Trigonometric Functions - Arccotangent Function Integration Formulas

Arccotangent Function Integration Formulas

\int\arccot(a\,x)\,dx= x\arccot(a\,x)+ \frac{\ln\left(a^2\,x^2+1\right)}{2\,a}+C
\int x\arccot(a\,x)\,dx= \frac{x^2\arccot(a\,x)}{2}+ \frac{\arccot(a\,x)}{2\,a^2}+\frac{x}{2\,a}+C
\int x^2\arccot(a\,x)\,dx= \frac{x^3\arccot(a\,x)}{3}- \frac{\ln\left(a^2\,x^2+1\right)}{6\,a^3}+\frac{x^2}{6\,a}+C
\int x^m\arccot(a\,x)\,dx= \frac{x^{m+1}\arccot(a\,x)}{m+1}+ \frac{a}{m+1}\int \frac{x^{m+1}}{a^2\,x^2+1}\,dx\quad(m\ne-1)

Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    “... The state’s one function is to give.
    The bud must bloom till blowsy blown
    Its petals loosen and are strown;
    And that’s a fate it can’t evade
    Unless ‘twould rather wilt than fade.”
    Robert Frost (1874–1963)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    That’s the great danger of sectarian opinions, they always accept the formulas of past events as useful for the measurement of future events and they never are, if you have high standards of accuracy.
    John Dos Passos (1896–1970)