List of Integrals of Inverse Trigonometric Functions - Arccosecant Function Integration Formulas

Arccosecant Function Integration Formulas

\int\arccsc(a\,x)\,dx= x\arccsc(a\,x)+ \frac{1}{a}\,\operatorname{artanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x\arccsc(a\,x)\,dx= \frac{x^2\arccsc(a\,x)}{2}+ \frac{x}{2\,a}\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x^2\arccsc(a\,x)\,dx= \frac{x^3\arccsc(a\,x)}{3}\,+\, \frac{1}{6\,a^3}\,\operatorname{artanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}\,+\, \frac{x^2}{6\,a}\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,C
\int x^m\arccsc(a\,x)\,dx= \frac{x^{m+1}\arccsc(a\,x)}{m+1}\,+\, \frac{1}{a\,(m+1)}\int \frac{x^{m-1}}{\sqrt{1-\frac{1}{a^2\,x^2}}}\,dx\quad(m\ne-1)
Lists of integrals
  • Rational functions
  • Irrational functions
  • Trigonometric functions
  • Inverse trigonometric functions
  • Hyperbolic functions
  • Inverse hyperbolic functions
  • Exponential functions
  • Logarithmic functions
  • Gaussian functions

Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    To make us feel small in the right way is a function of art; men can only make us feel small in the wrong way.
    —E.M. (Edward Morgan)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.
    Hermann Hesse (1877–1962)