List of Integrals of Inverse Trigonometric Functions - Arccosecant Function Integration Formulas

Arccosecant Function Integration Formulas

\int\arccsc(a\,x)\,dx= x\arccsc(a\,x)+ \frac{1}{a}\,\operatorname{artanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x\arccsc(a\,x)\,dx= \frac{x^2\arccsc(a\,x)}{2}+ \frac{x}{2\,a}\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x^2\arccsc(a\,x)\,dx= \frac{x^3\arccsc(a\,x)}{3}\,+\, \frac{1}{6\,a^3}\,\operatorname{artanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}\,+\, \frac{x^2}{6\,a}\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,C
\int x^m\arccsc(a\,x)\,dx= \frac{x^{m+1}\arccsc(a\,x)}{m+1}\,+\, \frac{1}{a\,(m+1)}\int \frac{x^{m-1}}{\sqrt{1-\frac{1}{a^2\,x^2}}}\,dx\quad(m\ne-1)
Lists of integrals
  • Rational functions
  • Irrational functions
  • Trigonometric functions
  • Inverse trigonometric functions
  • Hyperbolic functions
  • Inverse hyperbolic functions
  • Exponential functions
  • Logarithmic functions
  • Gaussian functions

Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    The uses of travel are occasional, and short; but the best fruit it finds, when it finds it, is conversation; and this is a main function of life.
    Ralph Waldo Emerson (1803–1882)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    It is sentimentalism to assume that the teaching of life can always be fitted to the child’s interests, just as it is empty formalism to force the child to parrot the formulas of adult society. Interests can be created and stimulated.
    Jerome S. Bruner (20th century)