List of Integrals of Inverse Trigonometric Functions - Arccosecant Function Integration Formulas

Arccosecant Function Integration Formulas

\int\arccsc(a\,x)\,dx= x\arccsc(a\,x)+ \frac{1}{a}\,\operatorname{artanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x\arccsc(a\,x)\,dx= \frac{x^2\arccsc(a\,x)}{2}+ \frac{x}{2\,a}\sqrt{1-\frac{1}{a^2\,x^2}}+C
\int x^2\arccsc(a\,x)\,dx= \frac{x^3\arccsc(a\,x)}{3}\,+\, \frac{1}{6\,a^3}\,\operatorname{artanh}\,\sqrt{1-\frac{1}{a^2\,x^2}}\,+\, \frac{x^2}{6\,a}\sqrt{1-\frac{1}{a^2\,x^2}}\,+\,C
\int x^m\arccsc(a\,x)\,dx= \frac{x^{m+1}\arccsc(a\,x)}{m+1}\,+\, \frac{1}{a\,(m+1)}\int \frac{x^{m-1}}{\sqrt{1-\frac{1}{a^2\,x^2}}}\,dx\quad(m\ne-1)
Lists of integrals
  • Rational functions
  • Irrational functions
  • Trigonometric functions
  • Inverse trigonometric functions
  • Hyperbolic functions
  • Inverse hyperbolic functions
  • Exponential functions
  • Logarithmic functions
  • Gaussian functions

Read more about this topic:  List Of Integrals Of Inverse Trigonometric Functions

Famous quotes containing the words function, integration and/or formulas:

    No one, however powerful and successful, can function as an adult if his parents are not satisfied with him.
    Frank Pittman (20th century)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    That’s the great danger of sectarian opinions, they always accept the formulas of past events as useful for the measurement of future events and they never are, if you have high standards of accuracy.
    John Dos Passos (1896–1970)