Continuous Transforms
Applied to functions of continuous arguments, Fourier-related transforms include:
- Two-sided Laplace transform
- Mellin transform, another closely related integral transform
- Laplace transform
- Fourier transform, with special cases:
- Fourier series
- When the input function/waveform is periodic, the Fourier transform output is a Dirac comb function, modulated by a discrete sequence of finite-valued coefficients that are complex-valued in general. These are called Fourier series coefficients. The term Fourier series actually refers to the inverse Fourier transform, which is a sum of sinusoids at discrete frequencies, weighted by the Fourier series coefficients.
- When the non-zero portion of the input function has finite duration, the Fourier transform is continuous and finite-valued. But a discrete subset of its values is sufficient to reconstruct/represent the portion that was analyzed. The same discrete set is obtained by treating the duration of the segment as one period of a periodic function and computing the Fourier series coefficients.
- Sine and cosine transforms: When the input function has odd or even symmetry around the origin, the Fourier transform reduces to a sine or cosine transform.
- Fourier series
- Hartley transform
- Short-time Fourier transform (or short-term Fourier transform) (STFT)
- Chirplet transform
- Fractional Fourier transform (FRFT)
- Hankel transform: related to the Fourier Transform of radial functions.
Read more about this topic: List Of Fourier-related Transforms
Famous quotes containing the words continuous and/or transforms:
“I describe family values as responsibility towards others, increase of tolerance, compromise, support, flexibility. And essentially the things I call the silent song of lifethe continuous process of mutual accommodation without which life is impossible.”
—Salvador Minuchin (20th century)
“Now, since our condition accommodates things to itself, and transforms them according to itself, we no longer know things in their reality; for nothing comes to us that is not altered and falsified by our Senses. When the compass, the square, and the rule are untrue, all the calculations drawn from them, all the buildings erected by their measure, are of necessity also defective and out of plumb. The uncertainty of our senses renders uncertain everything that they produce.”
—Michel de Montaigne (15331592)