Continuous Transforms
Applied to functions of continuous arguments, Fourier-related transforms include:
- Two-sided Laplace transform
- Mellin transform, another closely related integral transform
- Laplace transform
- Fourier transform, with special cases:
- Fourier series
- When the input function/waveform is periodic, the Fourier transform output is a Dirac comb function, modulated by a discrete sequence of finite-valued coefficients that are complex-valued in general. These are called Fourier series coefficients. The term Fourier series actually refers to the inverse Fourier transform, which is a sum of sinusoids at discrete frequencies, weighted by the Fourier series coefficients.
- When the non-zero portion of the input function has finite duration, the Fourier transform is continuous and finite-valued. But a discrete subset of its values is sufficient to reconstruct/represent the portion that was analyzed. The same discrete set is obtained by treating the duration of the segment as one period of a periodic function and computing the Fourier series coefficients.
- Sine and cosine transforms: When the input function has odd or even symmetry around the origin, the Fourier transform reduces to a sine or cosine transform.
- Fourier series
- Hartley transform
- Short-time Fourier transform (or short-term Fourier transform) (STFT)
- Chirplet transform
- Fractional Fourier transform (FRFT)
- Hankel transform: related to the Fourier Transform of radial functions.
Read more about this topic: List Of Fourier-related Transforms
Famous quotes containing the words continuous and/or transforms:
“Perhaps when distant people on other planets pick up some wave-length of ours all they hear is a continuous scream.”
—Iris Murdoch (b. 1919)
“It is old age, rather than death, that is to be contrasted with life. Old age is lifes parody, whereas death transforms life into a destiny: in a way it preserves it by giving it the absolute dimension. ... Death does away with time.”
—Simone De Beauvoir (19081986)
Related Phrases
Related Words