Liquid Crystal - Pattern Formation in Liquid Crystals

Pattern Formation in Liquid Crystals

See also: Pattern formation

Anisotropy of liquid crystals is a property not observed in other fluids. This anisotropy makes flows of liquid crystals behave more differentially than those of ordinary fluids. For example, injection of a flux of a liquid crystal between two close parallel plates (viscous fingering), causes orientation of the molecules to couple with the flow, with the resulting emergence of dendritic patterns. This anisotropy is also manifested in the interfacial energy (surface tension) between different liquid crystal phases. This anisotropy determines the equilibrium shape at the coexistence temperature, and is so strong that usually facets appear. When temperature is changed one of the phases grows, forming different morphologies depending on the temperature change. Since growth is controlled by heat diffusion, anisotropy in thermal conductivity favors growth in specific directions, which has also an effect on the final shape.

Read more about this topic:  Liquid Crystal

Famous quotes containing the words pattern, formation, liquid and/or crystals:

    Put out the light, and then put out the light.
    If I quench thee, thou flaming minister,
    I can again thy former light restore
    Should I repent me; but once put out thy light,
    Thou cunning’st pattern of excelling nature,
    I know not where is that Promethean heat
    That can thy light relume.
    William Shakespeare (1564–1616)

    It is because the body is a machine that education is possible. Education is the formation of habits, a superinducing of an artificial organisation upon the natural organisation of the body.
    Thomas Henry Huxley (1825–1895)

    “Awake,
    My fairest, my espoused, my latest found,
    Heaven’s last best gift, my ever new delight,
    Awake, the morning shines, and the fresh field
    Calls us: we lose the prime, to mark how spring
    Our tended plants, how blows the citron grove,
    What drops the myrrh and what the balmy reed,
    How nature paints her colors, how the bee
    Sits on the bloom extracting liquid sweet.”
    John Milton (1608–1674)

    It is clear that everybody interested in science must be interested in world 3 objects. A physical scientist, to start with, may be interested mainly in world 1 objects—say crystals and X-rays. But very soon he must realize how much depends on our interpretation of the facts, that is, on our theories, and so on world 3 objects. Similarly, a historian of science, or a philosopher interested in science must be largely a student of world 3 objects.
    Karl Popper (1902–1994)