Lipschitz Continuity - Definitions

Definitions

Given two metric spaces (X, dX) and (Y, dY), where dX denotes the metric on the set X and dY is the metric on set Y (for example, Y might be the set of real numbers R with the metric dY(x, y) = |xy|, and X might be a subset of R), a function

is called Lipschitz continuous if there exists a real constant K ≥ 0 such that, for all x1 and x2 in X,

Any such K is referred to as a Lipschitz constant for the function ƒ. The smallest constant is sometimes called the (best) Lipschitz constant; however in most cases the latter notion is less relevant. If K = 1 the function is called a short map, and if 0 ≤ K < 1 the function is called a contraction.

The inequality is (trivially) satisfied if x1 = x2. Otherwise, one can equivalently define a function to be Lipschitz continuous if and only if there exists a constant K ≥ 0 such that, for all x1x2,

For real-valued functions of several real variables, this holds if and only if the absolute value of the slopes of all secant lines are bounded by K. The set of lines of slope K passing through a point on the graph of the function forms a circular cone, and a function is Lipschitz if and only if the graph of the function everywhere lies completely outside of this cone (see figure).

A function is called locally Lipschitz continuous if for every x in X there exists a neighborhood U of x such that f restricted to U is Lipschitz continuous. Equivalently, if X is a locally compact metric space, then ƒ is locally Lipschitz if and only if it is Lipschitz continuous on every compact subset of X. In spaces that are not locally compact, this is a necessary but not a sufficient condition.

More generally, a function f defined on X is said to be Hölder continuous or to satisfy a Hölder condition of order α > 0 on X if there exists a constant M > 0 such that

for all x and y in X. Sometimes a Hölder condition of order α is also called a uniform Lipschitz condition of order α > 0.

If there exists a K ≥ 1 with

then ƒ is called bilipschitz (also written bi-Lipschitz). A bilipschitz mapping is injective, and is in fact a homeomorphism onto its image. A bilipschitz function is the same thing as an injective Lipschitz function whose inverse function is also Lipschitz. Surjective bilipschitz functions are exactly the isomorphisms of metric spaces.

Read more about this topic:  Lipschitz Continuity

Famous quotes containing the word definitions:

    What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.
    —G.C. (Georg Christoph)

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)

    The loosening, for some people, of rigid role definitions for men and women has shown that dads can be great at calming babies—if they take the time and make the effort to learn how. It’s that time and effort that not only teaches the dad how to calm the babies, but also turns him into a parent, just as the time and effort the mother puts into the babies turns her into a parent.
    Pamela Patrick Novotny (20th century)