Liouville Number - Structure of The Set of Liouville Numbers

Structure of The Set of Liouville Numbers

For each positive integer n, set

\begin{align} U_n & =\bigcup\limits_{q=2}^\infty\bigcup\limits_{p=-\infty}^\infty \left\{ x \in \mathbb R : 0< \vert x- \frac{p}{q} \vert < \frac{1}{q^{n}}\right\} \\
& = \bigcup\limits_{q=2}^\infty\bigcup\limits_{p=-\infty}^\infty \left(\frac{p}{q}-\frac{1}{q^n},\frac{p}{q}+\frac{1}{q^n}\right) \setminus \left\{\frac{p}{q}\right\}\end{align}.

The set of all Liouville numbers can thus be written as .

Each is an open set; as its closure contains all rationals (the {p/q}'s from each punctured interval), it is also a dense subset of real line. Since it is the intersection of countably many such open dense sets, is comeagre, that is to say, it is a dense Gδ set.

Along with the above remarks about measure, it shows that the set of Liouville numbers and its complement decompose the reals into two sets, one of which is meagre, and the other of Lebesgue measure zero.

Read more about this topic:  Liouville Number

Famous quotes containing the words structure of, structure, set and/or numbers:

    I really do inhabit a system in which words are capable of shaking the entire structure of government, where words can prove mightier than ten military divisions.
    Václav Havel (b. 1936)

    Who says that fictions only and false hair
    Become a verse? Is there in truth no beauty?
    Is all good structure in a winding stair?
    May no lines pass, except they do their duty
    Not to a true, but painted chair?
    George Herbert (1593–1633)

    It is a great pity—but ‘tis certain from every day’s observation of man, that he may be set on fire like a candle, at either end—provided there is a sufficient wick standing out.
    Laurence Sterne (1713–1768)

    Think of the earth as a living organism that is being attacked by billions of bacteria whose numbers double every forty years. Either the host dies, or the virus dies, or both die.
    Gore Vidal (b. 1925)