Liouville Number - Structure of The Set of Liouville Numbers

Structure of The Set of Liouville Numbers

For each positive integer n, set

\begin{align} U_n & =\bigcup\limits_{q=2}^\infty\bigcup\limits_{p=-\infty}^\infty \left\{ x \in \mathbb R : 0< \vert x- \frac{p}{q} \vert < \frac{1}{q^{n}}\right\} \\
& = \bigcup\limits_{q=2}^\infty\bigcup\limits_{p=-\infty}^\infty \left(\frac{p}{q}-\frac{1}{q^n},\frac{p}{q}+\frac{1}{q^n}\right) \setminus \left\{\frac{p}{q}\right\}\end{align}.

The set of all Liouville numbers can thus be written as .

Each is an open set; as its closure contains all rationals (the {p/q}'s from each punctured interval), it is also a dense subset of real line. Since it is the intersection of countably many such open dense sets, is comeagre, that is to say, it is a dense Gδ set.

Along with the above remarks about measure, it shows that the set of Liouville numbers and its complement decompose the reals into two sets, one of which is meagre, and the other of Lebesgue measure zero.

Read more about this topic:  Liouville Number

Famous quotes containing the words structure of the, structure of, structure, set and/or numbers:

    Just as a new scientific discovery manifests something that was already latent in the order of nature, and at the same time is logically related to the total structure of the existing science, so the new poem manifests something that was already latent in the order of words.
    Northrop Frye (b. 1912)

    I’m a Sunday School teacher, and I’ve always known that the structure of law is founded on the Christian ethic that you shall love the Lord your God and your neighbor as yourself—a very high and perfect standard. We all know the fallibility of man, and the contentions in society, as described by Reinhold Niebuhr and many others, don’t permit us to achieve perfection.
    Jimmy Carter (James Earl Carter, Jr.)

    One theme links together these new proposals for family policy—the idea that the family is exceedingly durable. Changes in structure and function and individual roles are not to be confused with the collapse of the family. Families remain more important in the lives of children than other institutions. Family ties are stronger and more vital than many of us imagine in the perennial atmosphere of crisis surrounding the subject.
    Joseph Featherstone (20th century)

    Setting limits gives your child something to define himself against. If you are able to set limits without being overly intrusive or controlling, you’ll be providing him with a firm boundary against which he can test his own ideas.
    Stanley I. Greenspan (20th century)

    I’m not even thinking straight any more. Numbers buzz in my head like wasps.
    Kurt Neumann (1906–1958)