Liouville Numbers and Measure
From the point of view of measure theory, the set of all Liouville numbers is small. More precisely, its Lebesgue measure is zero. The proof given follows some ideas by John C. Oxtoby.
For positive integers and set:
- – we have
Observe that for each positive integer and, we also have
Since and we have
Now and it follows that for each positive integer, has Lebesgue measure zero. Consequently, so has .
In contrast, the Lebesgue measure of the set of all real transcendental numbers is infinite (since is the complement of a null set).
In fact, the Hausdorff dimension of is zero, which implies that the Hausdorff measure of is zero for all dimension . Hausdorff dimension of under other dimension functions has also been investigated.
Read more about this topic: Liouville Number
Famous quotes containing the words numbers and/or measure:
“The barriers of conventionality have been raised so high, and so strangely cemented by long existence, that the only hope of overthrowing them exists in the union of numbers linked together by common opinion and effort ... the united watchword of thousands would strike at the foundation of the false system and annihilate it.”
—Mme. Ellen Louise Demorest 18241898, U.S. womens magazine editor and womans club movement pioneer. Demorests Illustrated Monthly and Mirror of Fashions, p. 203 (January 1870)
“I am not the measure of creation.
This is beyond me, this fish.
His God stands outside my God.”
—D.H. (David Herbert)