Properties of Subspaces
A way to characterize subspaces is that they are closed under linear combinations. That is, a nonempty set W is a subspace if and only if every linear combination of (finitely many) elements of W also belongs to W. Conditions 2 and 3 for a subspace are simply the most basic kinds of linear combinations.
A subspace W of X need not be closed in general, but a Euclidean subspace is always closed.
Read more about this topic: Linear Subspace
Famous quotes containing the words properties of and/or properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)