Linear Span - Definition

Definition

Given a vector space V over a field K, the span of a set S (not necessarily finite) is defined to be the intersection W of all subspaces of V that contain S. W is referred to as the subspace spanned by S, or by the vectors in S. Conversely, S is called a spanning set of W, and we say that S spans W.

Alternatively, the span of S may be defined as the set of all finite linear combinations of elements of S, which follows from the above definition.

In particular, if S is a finite subset of V, then the span of S is the set of all linear combinations of the elements of S. In the case of infinite S, infinite linear combinations (i.e. where a combination may involve an infinite sum) are excluded by the definition; a generalization that allows these is not equivalent.

Read more about this topic:  Linear Span

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)