Definition
Given a vector space V over a field K, the span of a set S (not necessarily finite) is defined to be the intersection W of all subspaces of V that contain S. W is referred to as the subspace spanned by S, or by the vectors in S. Conversely, S is called a spanning set of W, and we say that S spans W.
Alternatively, the span of S may be defined as the set of all finite linear combinations of elements of S, which follows from the above definition.
In particular, if S is a finite subset of V, then the span of S is the set of all linear combinations of the elements of S. In the case of infinite S, infinite linear combinations (i.e. where a combination may involve an infinite sum) are excluded by the definition; a generalization that allows these is not equivalent.
Read more about this topic: Linear Span
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)