Closed Linear Span
In functional analysis, a closed linear span of a set of vectors is the minimal closed set which contains the linear span of that set. Suppose that X is a normed vector space and let E be any non-empty subset of X. The closed linear span of E, denoted by or, is the intersection of all the closed linear subspaces of X which contain E.
One mathematical formulation of this is
Read more about this topic: Linear Span
Famous quotes containing the words closed and/or span:
“The return of the asymmetrical Saturday was one of those small events that were interior, local, almost civic and which, in tranquil lives and closed societies, create a sort of national bond and become the favorite theme of conversation, of jokes and of stories exaggerated with pleasure: it would have been a ready- made seed for a legendary cycle, had any of us leanings toward the epic.”
—Marcel Proust (18711922)
“To course that span of consciousness thoust named
The Open Roadthy vision is reclaimed!
What heritage thoust signalled to our hands!”
—Hart Crane (18991932)