Linear Programming - Standard Form

Standard form is the usual and most intuitive form of describing a linear programming problem. It consists of the following three parts:

  • A linear function to be maximized
e.g.
  • Problem constraints of the following form
e.g.
\begin{matrix} a_{11} x_1 + a_{12} x_2 &\leq b_1 \\ a_{21} x_1 + a_{22} x_2 &\leq b_2 \\ a_{31} x_1 + a_{32} x_2 &\leq b_3 \\
\end{matrix}
  • Non-negative variables
e.g.
\begin{matrix} x_1 \geq 0 \\ x_2 \geq 0
\end{matrix}

The problem is usually expressed in matrix form, and then becomes:

Other forms, such as minimization problems, problems with constraints on alternative forms, as well as problems involving negative variables can always be rewritten into an equivalent problem in standard form.

Read more about this topic:  Linear Programming

Famous quotes containing the words standard and/or form:

    There is a certain standard of grace and beauty which consists in a certain relation between our nature, such as it is, weak or strong, and the thing which pleases us. Whatever is formed according to this standard pleases us, be it house, song, discourse, verse, prose, woman, birds, rivers, trees, room, dress, and so on. Whatever is not made according to this standard displeases those who have good taste.
    Blaise Pascal (1623–1662)

    Quite generally, the familiar, just because it is familiar, is not cognitively understood. The commonest way in which we deceive either ourselves or others about understanding is by assuming something as familiar, and accepting it on that account; with all its pros and cons, such knowing never gets anywhere, and it knows not why.... The analysis of an idea, as it used to be carried out, was, in fact, nothing else than ridding it of the form in which it had become familiar.
    Georg Wilhelm Friedrich Hegel (1770–1831)