Linear Polarization - Mathematical Description of Linear Polarization

Mathematical Description of Linear Polarization

The classical sinusoidal plane wave solution of the electromagnetic wave equation for the electric and magnetic fields is (cgs units)

for the magnetic field, where k is the wavenumber,

is the angular frequency of the wave, and is the speed of light.

Here

is the amplitude of the field and

is the Jones vector in the x-y plane.

The wave is linearly polarized when the phase angles are equal,

.

This represents a wave polarized at an angle with respect to the x axis. In that case the Jones vector can be written

.

The state vectors for linear polarization in x or y are special cases of this state vector.

If unit vectors are defined such that

and

then the polarization state can written in the "x-y basis" as

.

Read more about this topic:  Linear Polarization

Famous quotes containing the words mathematical and/or description:

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    The type of fig leaf which each culture employs to cover its social taboos offers a twofold description of its morality. It reveals that certain unacknowledged behavior exists and it suggests the form that such behavior takes.
    Freda Adler (b. 1934)