Linear Regression Models
For the regression case, the statistical model is as follows. Given a (random) sample the relation between the observations Yi and the independent variables Xij is formulated as
where may be nonlinear functions. In the above, the quantities εi are random variables representing errors in the relationship. The "linear" part of the designation relates to the appearance of the regression coefficients, βj in a linear way in the above relationship. Alternatively, one may say that the predicted values corresponding to the above model, namely
are linear functions of the βj.
Given that estimation is undertaken on the basis of a least squares analysis, estimates of the unknown parameters βj are determined by minimising a sum of squares function
From this, it can readily be seen that the "linear" aspect of the model means the following:
-
- the function to be minimised is a quadratic function of the βj for which minimisation is a relatively simple problem;
- the derivatives of the function are linear functions of the βj making it easy to find the minimising values;
- the minimising values βj are linear functions of the observations Yi;
- the minimising values βj are linear functions of the random errors εi which makes it relatively easy to determine the statistical properties of the estimated values of βj.
Read more about this topic: Linear Model
Famous quotes containing the word models:
“Grandparents can be role models about areas that may not be significant to young children directly but that can teach them about patience and courage when we are ill, or handicapped by problems of aging. Our attitudes toward retirement, marriage, recreation, even our feelings about death and dying may make much more of an impression than we realize.”
—Eda Le Shan (20th century)