Continuity
A linear transformation between topological vector spaces, for example normed spaces, may be continuous. If its domain and codomain are the same, it will then be a continuous linear operator. A linear operator on a normed linear space is continuous if and only if it is bounded, for example, when the domain is finite-dimensional. An infinite-dimensional domain may have discontinuous linear operators.
An example of an unbounded, hence discontinuous, linear transformation is differentiation on the space of smooth functions equipped with the supremum norm (a function with small values can have a derivative with large values, while the derivative of 0 is 0). For a specific example, sin(nx)/n converges to 0, but its derivative cos(nx) does not, so differentiation is not continuous at 0 (and by a variation of this argument, it is not continuous anywhere).
Read more about this topic: Linear Map
Famous quotes containing the word continuity:
“The dialectic between change and continuity is a painful but deeply instructive one, in personal life as in the life of a people. To see the light too often has meant rejecting the treasures found in darkness.”
—Adrienne Rich (b. 1929)
“Every generation rewrites the past. In easy times history is more or less of an ornamental art, but in times of danger we are driven to the written record by a pressing need to find answers to the riddles of today.... In times of change and danger when there is a quicksand of fear under mens reasoning, a sense of continuity with generations gone before can stretch like a lifeline across the scary present and get us past that idiot delusion of the exceptional Now that blocks good thinking.”
—John Dos Passos (18961970)
“There is never a beginning, there is never an end, to the inexplicable continuity of this web of God, but always circular power returning into itself.”
—Ralph Waldo Emerson (18031882)