Change of Basis
Given a linear map whose matrix is A, in the basis B of the space it transforms vectors coordinates as = A. As vectors change with the inverse of B, its inverse transformation is = B.
Substituting this in the first expression
hence
Therefore the matrix in the new basis is A′ = B−1AB, being B the matrix of the given basis.
Therefore linear maps are said to be 1-co 1-contra -variant objects, or type (1, 1) tensors.
Read more about this topic: Linear Map
Famous quotes containing the words change and/or basis:
“Our image has undergone change from David fighting Goliath to being Goliath.”
—Yitzhak Shamir (b. 1915)
“Socialism proposes no adequate substitute for the motive of enlightened selfishness that to-day is at the basis of all human labor and effort, enterprise and new activity.”
—William Howard Taft (18571930)