Change of Basis
Given a linear map whose matrix is A, in the basis B of the space it transforms vectors coordinates as = A. As vectors change with the inverse of B, its inverse transformation is = B.
Substituting this in the first expression
hence
Therefore the matrix in the new basis is A′ = B−1AB, being B the matrix of the given basis.
Therefore linear maps are said to be 1-co 1-contra -variant objects, or type (1, 1) tensors.
Read more about this topic: Linear Map
Famous quotes containing the words change and/or basis:
“Raise a million filters and the rain will not be clean, until the longing for it be refined in deep confession. And still we hear, If only this nation had a soul, or, Let us change the way we trade, or, Let us be proud of our region.”
—Leonard Cohen (b. 1934)
“Buddhists and Christians contrive to agree about death
Making death their ideal basis for different ideals.
The Communists however disapprove of death
Except when practical.”
—William Empson (1906–1984)