Encoding Classical/intuitionistic Logic in Linear Logic
Both intuitionistic and classical implication can be recovered from linear implication by inserting exponentials: intuitionistic implication is encoded as !A ⊸ B, and classical implication as !A ⊸ ?B. The idea is that exponentials allow us to use a formula as many times as we need, which is always possible in classical and intuitionistic logic.
Formally, there exists a translation of formulae of intuitionistic logic to formulae of linear logic in a way which guarantees that the original formula is provable in intuitionistic logic if and only if the translated formula is provable in linear logic. Using the Gödel–Gentzen negative translation, we can thus embed classical first-order logic into linear first-order logic.
Read more about this topic: Linear Logic
Famous quotes containing the words classical and/or logic:
“Compare the history of the novel to that of rock n roll. Both started out a minority taste, became a mass taste, and then splintered into several subgenres. Both have been the typical cultural expressions of classes and epochs. Both started out aggressively fighting for their share of attention, novels attacking the drama, the tract, and the poem, rock attacking jazz and pop and rolling over classical music.”
—W. T. Lhamon, U.S. educator, critic. Material Differences, Deliberate Speed: The Origins of a Cultural Style in the American 1950s, Smithsonian (1990)
“Somebody who should have been born
is gone.
Yes, woman, such logic will lead
to loss without death. Or say what you meant,
you coward . . . this baby that I bleed.”
—Anne Sexton (19281974)