Linear Independence - Projective Space of Linear Dependences

Projective Space of Linear Dependences

A linear dependence among vectors v1, ..., vn is a tuple (a1, ..., an) with n scalar components, not all zero, such that

If such a linear dependence exists, then the n vectors are linearly dependent. It makes sense to identify two linear dependences if one arises as a non-zero multiple of the other, because in this case the two describe the same linear relationship among the vectors. Under this identification, the set of all linear dependences among v1, ...., vn is a projective space.

Read more about this topic:  Linear Independence

Famous quotes containing the word space:

    Thus all our dignity lies in thought. Through it we must raise ourselves, and not through space or time, which we cannot fill. Let us endeavor, then, to think well: this is the mainspring of morality.
    Blaise Pascal (1623–1662)