Linear Functional - Dual Vectors and Bilinear Forms

Dual Vectors and Bilinear Forms

See also: Hodge dual

Every non-degenerate bilinear form on a finite-dimensional vector space V gives rise to an isomorphism from V to V*. Specifically, denoting the bilinear form on V by <, > (for instance in Euclidean space <v,w> = vw is the dot product of v and w), then there is a natural isomorphism given by

The inverse isomorphism is given by where ƒ* is the unique element of V for which for all wV

The above defined vector v* ∈ V* is said to be the dual vector of vV.

In an infinite dimensional Hilbert space, analogous results hold by the Riesz representation theorem. There is a mapping VV* into the continuous dual space V*. However, this mapping is antilinear rather than linear.

Read more about this topic:  Linear Functional

Famous quotes containing the words dual and/or forms:

    Thee for my recitative,
    Thee in the driving storm even as now, the snow, the winter-day
    declining,
    Thee in thy panoply, thy measur’d dual throbbing and thy beat
    convulsive,
    Thy black cylindric body, golden brass and silvery steel,
    Walt Whitman (1819–1892)

    This is a catastrophic universe, always; and subject to sudden reversals, upheavals, changes, cataclysms, with joy never anything but the song of substance under pressure forced into new forms and shapes.
    Doris Lessing (b. 1919)