Impulse Response and Transfer Function
The impulse response h of a linear time-invariant causal filter specifies the output that the filter would produce if it were to receive an input consisting of a single impulse at time 0. An "impulse" in a continuous time filter means a Dirac delta function; in a discrete time filter the Kronecker delta function would apply. The impulse response completely characterizes the response of any such filter, inasmuch as any possible input signal can be expressed as a (possibly infinite) combination of weighted delta functions. Multiplying the impulse response shifted in time according to the arrival of each of these delta functions by the amplitude of each delta function, and summing these responses together (according to the superposition principle, applicable to all linear systems) yields the output waveform.
Mathematically this is described as the convolution of a time-varying input signal x(t) with the filter's impulse response h, defined as:
The first form is the continuous-time form which describes mechanical and analog electronic systems, for instance. The second equation is a discrete-time version used, for example, by digital filters implemented in software, so-called digital signal processing. The impulse response h completely characterizes any linear time-invariant (or shift-invariant in the discrete-time case) filter. The input x is said to be "convolved" with the impulse response h having a (possibly infinite) duration of time T (or of N sampling periods).
The filter response can also be completely characterized in the frequency domain by its transfer function, which is the Fourier transform of the impulse response h. Typical filter design goals are to realize a particular frequency response, that is, the magnitude of the transfer function ; the importance of the phase of the transfer function varies according to the application, inasmuch as the shape of a waveform can be distorted to a greater or lesser extent in the process of achieving a desired (amplitude) response in the frequency domain.
Filter design consists of finding a possible transfer function that can be implemented within certain practical constraints dictated by the technology or desired complexity of the system, followed by a practical design that realizes that transfer function using the chosen technology. The complexity of a filter may be specified according to the order of the filter, which is specified differently depending on whether one is dealing with an IIR or FIR filter. We will now look at these two cases.
Read more about this topic: Linear Filter
Famous quotes containing the words impulse, response, transfer and/or function:
“The true critic is he who bears within himself the dreams and ideas and feelings of myriad generations, and to whom no form of thought is alien, no emotional impulse obscure.”
—Oscar Wilde (18541900)
“Ill never forget my fathers response when I told him I wanted to be a lawyer. He said, If you do this, no man will ever want you.”
—Cassandra Dunn (b. c. 1931)
“I have proceeded ... to prevent the lapse from ... the point of blending between wakefulness and sleep.... Not ... that I can render the point more than a pointbut that I can startle myself ... into wakefulnessand thus transfer the point ... into the realm of Memoryconvey its impressions,... to a situation where ... I can survey them with the eye of analysis.”
—Edgar Allan Poe (18091849)
“Literature does not exist in a vacuum. Writers as such have a definite social function exactly proportional to their ability as writers. This is their main use.”
—Ezra Pound (18851972)