Linear Filter - Impulse Response and Transfer Function

Impulse Response and Transfer Function

The impulse response h of a linear time-invariant causal filter specifies the output that the filter would produce if it were to receive an input consisting of a single impulse at time 0. An "impulse" in a continuous time filter means a Dirac delta function; in a discrete time filter the Kronecker delta function would apply. The impulse response completely characterizes the response of any such filter, inasmuch as any possible input signal can be expressed as a (possibly infinite) combination of weighted delta functions. Multiplying the impulse response shifted in time according to the arrival of each of these delta functions by the amplitude of each delta function, and summing these responses together (according to the superposition principle, applicable to all linear systems) yields the output waveform.

Mathematically this is described as the convolution of a time-varying input signal x(t) with the filter's impulse response h, defined as:

The first form is the continuous-time form which describes mechanical and analog electronic systems, for instance. The second equation is a discrete-time version used, for example, by digital filters implemented in software, so-called digital signal processing. The impulse response h completely characterizes any linear time-invariant (or shift-invariant in the discrete-time case) filter. The input x is said to be "convolved" with the impulse response h having a (possibly infinite) duration of time T (or of N sampling periods).

The filter response can also be completely characterized in the frequency domain by its transfer function, which is the Fourier transform of the impulse response h. Typical filter design goals are to realize a particular frequency response, that is, the magnitude of the transfer function ; the importance of the phase of the transfer function varies according to the application, inasmuch as the shape of a waveform can be distorted to a greater or lesser extent in the process of achieving a desired (amplitude) response in the frequency domain.

Filter design consists of finding a possible transfer function that can be implemented within certain practical constraints dictated by the technology or desired complexity of the system, followed by a practical design that realizes that transfer function using the chosen technology. The complexity of a filter may be specified according to the order of the filter, which is specified differently depending on whether one is dealing with an IIR or FIR filter. We will now look at these two cases.

Read more about this topic:  Linear Filter

Famous quotes containing the words impulse, response, transfer and/or function:

    In life, then, no new thing has ever arisen, or can arise, save out of the impulse of the male upon the female, the female upon the male. The interaction of the male and female spirit begot the wheel, the plough, and the first utterance that was made on the face of the earth.
    —D.H. (David Herbert)

    It’s given new meaning to me of the scientific term black hole.
    Don Logan, U.S. businessman, president and chief executive of Time Inc. His response when asked how much his company had spent in the last year to develop Pathfinder, Time Inc.’S site on the World Wide Web. Quoted in New York Times, p. D7 (November 13, 1995)

    I have proceeded ... to prevent the lapse from ... the point of blending between wakefulness and sleep.... Not ... that I can render the point more than a point—but that I can startle myself ... into wakefulness—and thus transfer the point ... into the realm of Memory—convey its impressions,... to a situation where ... I can survey them with the eye of analysis.
    Edgar Allan Poe (1809–1849)

    The mother’s and father’s attitudes toward the child correspond to the child’s own needs.... Mother has the function of making him secure in life, father has the function of teaching him, guiding him to cope with those problems with which the particular society the child has been born into confronts him.
    Erich Fromm (1900–1980)