Definition
Given a twice continuously differentiable function f of one real variable, Taylor's theorem for the case n = 1 states that
where is the remainder term. The linear approximation is obtained by dropping the remainder:
This is a good approximation for x when it is close enough to a; since a curve, when closely observed, will begin to resemble a straight line. Therefore, the expression on the right-hand side is just the equation for the tangent line to the graph of f at (a,f(a)). For this reason, this process is also called the tangent line approximation.
If f is concave down in the interval between x and a, the approximation will be an overestimate (since the derivative is decreasing in that interval). If f is concave up, the approximation will be an underestimate.
Linear approximations for vector functions of a vector variable are obtained in the same way, with the derivative at a point replaced by the Jacobian matrix. For example, given a differentiable function with real values, one can approximate for close to by the formula
The right-hand side is the equation of the plane tangent to the graph of at
In the more general case of Banach spaces, one has
where is the Fréchet derivative of at .
Read more about this topic: Linear Approximation
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)