Linear Approximation - Definition

Definition

Given a twice continuously differentiable function f of one real variable, Taylor's theorem for the case n = 1 states that

where is the remainder term. The linear approximation is obtained by dropping the remainder:

This is a good approximation for x when it is close enough to a; since a curve, when closely observed, will begin to resemble a straight line. Therefore, the expression on the right-hand side is just the equation for the tangent line to the graph of f at (a,f(a)). For this reason, this process is also called the tangent line approximation.

If f is concave down in the interval between x and a, the approximation will be an overestimate (since the derivative is decreasing in that interval). If f is concave up, the approximation will be an underestimate.

Linear approximations for vector functions of a vector variable are obtained in the same way, with the derivative at a point replaced by the Jacobian matrix. For example, given a differentiable function with real values, one can approximate for close to by the formula

The right-hand side is the equation of the plane tangent to the graph of at

In the more general case of Banach spaces, one has

where is the Fréchet derivative of at .

Read more about this topic:  Linear Approximation

Famous quotes containing the word definition:

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)