In Real or Complex Vector Spaces
If V is a vector space over or, and L is a subset of V, then L is a line segment if L can be parameterized as
for some vectors, in which case the vectors u and u + v are called the end points of L.
Sometimes one needs to distinguish between "open" and "closed" line segments. Then one defines a closed line segment as above, and an open line segment as a subset L that can be parametrized as
for some vectors .
Equivalently, a line segment is the convex hull of two points. Thus, the line segment can be expressed as a convex combination of the segment's two end points.
In geometry, it is sometimes defined that a point B is between two other points A and C, if the distance AB added to the distance BC is equal to the distance AC. Thus in the line segment with endpoints A = (ax, ay) and C = (cx, cy) is the following collection of points:
- .
Read more about this topic: Line Segment
Famous quotes containing the words real, complex and/or spaces:
“To die proudly when it is no longer possible to live proudly. Death freely chosen, death at the right time, brightly and cheerfully accomplished amid children and witnesses: then a real farewell is still possible, as the one who is taking leave is still there; also a real estimate of what one has wished, drawing the sum of ones lifeall in opposition to the wretched and revolting comedy that Christianity has made of the hour of death.”
—Friedrich Nietzsche (18441900)
“The money complex is the demonic, and the demonic is Gods ape; the money complex is therefore the heir to and substitute for the religious complex, an attempt to find God in things.”
—Norman O. Brown (b. 1913)
“When I consider the short duration of my life, swallowed up in the eternity before and after, the little space which I fill and even can see, engulfed in the infinite immensity of spaces of which I am ignorant and which know me not, I am frightened and am astonished at being here rather than there. For there is no reason why here rather than there, why now rather than then.”
—Blaise Pascal (16231662)