In Proofs
In an axiomatic treatment of geometry, the notion of betweenness is either assumed to satisfy a certain number of axioms, or else be defined in terms of an isometry of a line (used as a coordinate system).
Segments play an important role in other theories. For example, a set is convex if the segment that joins any two points of the set is contained in the set. This is important because it transforms some of the analysis of convex sets to the analysis of a line segment.
Read more about this topic: Line Segment
Famous quotes containing the word proofs:
“I do not think that a Physician should be admitted into the College till he could bring proofs of his having cured, in his own person, at least four incurable distempers.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“To invent without scruple a new principle to every new phenomenon, instead of adapting it to the old; to overload our hypothesis with a variety of this kind, are certain proofs that none of these principles is the just one, and that we only desire, by a number of falsehoods, to cover our ignorance of the truth.”
—David Hume (17111776)