Real-valued Functions
Assume that a function is defined from a subset of the real numbers to the real numbers. As in the case for sequences, the limit inferior and limit superior are always well-defined if we allow the values +∞ and -∞; in fact, if both agree then the limit exists and is equal to their common value (again possibly including the infinities). For example, given f(x) = sin(1/x), we have lim supx→0 f(x) = 1 and lim infx→0 f(x) = -1. The difference between the two is a rough measure of how "wildly" the function oscillates, and in observation of this fact, it is called the oscillation of f at a. This idea of oscillation is sufficient to, for example, characterize Riemann-integrable functions as continuous except on a set of measure zero . Note that points of nonzero oscillation (i.e., points at which f is "badly behaved") are discontinuities which, unless they make up a set of zero, are confined to a negligible set.
Read more about this topic: Limit Superior And Limit Inferior
Famous quotes containing the word functions:
“The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.”
—Cyril Connolly (19031974)