Functions From Metric Spaces To Metric Spaces
There is a notion of lim sup and lim inf for functions defined on a metric space whose relationship to limits of real-valued functions mirrors that of the relation between the lim sup, lim inf, and the limit of a real sequence. Take metric spaces X and Y, a subspace E contained in X, and a function f : E → Y. The space Y should also be an ordered set, so that the notions of supremum and infimum make sense. Define, for any limit point a of E,
and
where B(a;ε) denotes the metric ball of radius ε about a.
Note that as ε shrinks, the supremum of the function over the ball is monotone decreasing, so we have
and similarly
This finally motivates the definitions for general topological spaces. Take X, Y, E and a as before, but now let X and Y both be topological spaces. In this case, we replace metric balls with neighborhoods:
(there is a way to write the formula using a lim using nets and the neighborhood filter). This version is often useful in discussions of semi-continuity which crop up in analysis quite often. An interesting note is that this version subsumes the sequential version by considering sequences as functions from the natural numbers as a topological subspace of the extended real line, into the space (the closure of N in is N ∪ {∞}.)
Read more about this topic: Limit Superior And Limit Inferior
Famous quotes containing the words functions and/or spaces:
“One of the most highly valued functions of used parents these days is to be the villains of their childrens lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.”
—Frank Pittman (20th century)
“Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.”
—Jean Baudrillard (b. 1929)