Definition For Iterated Functions
Let be a metric space, and let be a continuous function. The -limit set of, denoted by, is the set of cluster points of the forward orbit of the iterated function . Hence, if and only if there is a strictly increasing sequence of natural numbers such that as . Another way to express this is
where denotes the closure of set . The closure is here needed, since we have not assumed that the underlying metric space of interest to be a complete metric space. The points in the limit set are non-wandering (but may not be recurrent points). This may also be formulated as the outer limit (limsup) of a sequence of sets, such that
If is a homeomorphism (that is, a bicontinuous bijection), then the -limit set is defined in a similar fashion, but for the backward orbit; i.e. .
Both sets are -invariant, and if is compact, they are compact and nonempty.
Read more about this topic: Limit Set
Famous quotes containing the words definition, iterated and/or functions:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“The customary cry,
Come buy, come buy,
With its iterated jingle
Of sugar-bated words:”
—Christina Georgina Rossetti (18301894)
“In todays world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.”
—Urie Bronfenbrenner (b. 1917)