Limit Point - Definition

Definition

Let S be a subset of a topological space X. A point x in X is a limit point of S if every neighbourhood of x contains at least one point of S different from x itself. Note that it doesn't make a difference if we relax the condition to open neighbourhoods only.

This is equivalent, in a T1 space, to requiring that every neighbourhood of x contains infinitely many points of S. It is often convenient to use the "open neighbourhood" form of the definition to show that a point is a limit point and to use the "general neighbourhood" form of the definition to derive facts from a known limit point.

Alternatively, if the space X is sequential, we may say that xX is a limit point of S if and only if there is an ω-sequence of points in S \ {x} whose limit is x; hence, x is called a limit point.

Read more about this topic:  Limit Point

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)