Limit Point - Definition

Definition

Let S be a subset of a topological space X. A point x in X is a limit point of S if every neighbourhood of x contains at least one point of S different from x itself. Note that it doesn't make a difference if we relax the condition to open neighbourhoods only.

This is equivalent, in a T1 space, to requiring that every neighbourhood of x contains infinitely many points of S. It is often convenient to use the "open neighbourhood" form of the definition to show that a point is a limit point and to use the "general neighbourhood" form of the definition to derive facts from a known limit point.

Alternatively, if the space X is sequential, we may say that xX is a limit point of S if and only if there is an ω-sequence of points in S \ {x} whose limit is x; hence, x is called a limit point.

Read more about this topic:  Limit Point

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)