Limit (mathematics) - Limit of A Function

Limit of A Function

Suppose f(x) is a real-valued function and c is a real number. The expression

means that f(x) can be made to be as close to L as desired by making x sufficiently close to c. In that case, the above equation can be read as "the limit of f of x, as x approaches c, is L".

Augustin-Louis Cauchy in 1821, followed by Karl Weierstrass, formalized the definition of the limit of a function as the above definition, which became known as the (ε, δ)-definition of limit in the 19th century. The definition uses ε (the lowercase Greek letter epsilon) to represent a small positive number, so that "f(x) becomes arbitrarily close to L" means that f(x) eventually lies in the interval (L - ε, L + ε), which can also be written using the absolute value sign as |f(x) - L| < ε. The phrase "as x approaches c" then indicates that we refer to values of x whose distance from c is less than some positive number δ (the lower case Greek letter delta)—that is, values of x within either (c - δ, c) or (c, c + δ), which can be expressed with 0 < |x - c| < δ. The first inequality means that the distance between x and c is greater than 0 and that x ≠ c, while the second indicates that x is within distance δ of c.

Note that the above definition of a limit is true even if f(c) ≠ L. Indeed, the function f(x) need not even be defined at c.

For example, if

then f(1) is not defined (see division by zero), yet as x moves arbitrarily close to 1, f(x) correspondingly approaches 2:

f(0.9) f(0.99) f(0.999) f(1.0) f(1.001) f(1.01) f(1.1)
1.900 1.990 1.999 ⇒ undefined ⇐ 2.001 2.010 2.100

Thus, f(x) can be made arbitrarily close to the limit of 2 just by making x sufficiently close to 1.

In other words,

In addition to limits at finite values, functions can also have limits at infinity. For example, consider

  • f(100) = 1.9900
  • f(1000) = 1.9990
  • f(10000) = 1.99990

As x becomes extremely large, the value of f(x) approaches 2, and the value of f(x) can be made as close to 2 as one could wish just by picking x sufficiently large. In this case, the limit of f(x) as x approaches infinity is 2. In mathematical notation,

Read more about this topic:  Limit (mathematics)

Famous quotes containing the words limit of, limit and/or function:

    Can you find out the deep things of God? Can you find out the limit of the Almighty?
    Bible: Hebrew, Job 11:7.

    Today one does not hear much about him.... The fame of his likes circulates briskly but soon grows heavy and stale; and as for history it will limit his life story to the dash between two dates.
    Vladimir Nabokov (1899–1977)

    The intension of a proposition comprises whatever the proposition entails: and it includes nothing else.... The connotation or intension of a function comprises all that attribution of this predicate to anything entails as also predicable to that thing.
    Clarence Lewis (1883–1964)