Limit (mathematics) - Limit As Standard Part

Limit As Standard Part

In the context of a hyperreal enlargement of the number system, the limit of a sequence can be expressed as the standard part of the value of the natural extension of the sequence at an infinite hypernatural index . Thus,

.

Here the standard part function "st" associates to each finite hyperreal, the unique finite real infinitely close to it (i.e., the difference between them is infinitesimal). This formalizes the natural intuition that for "very large" values of the index, the terms in the sequence are "very close" to the limit value of the sequence. Conversely, the standard part of a hyperreal represented in the ultrapower construction by a Cauchy sequence, is simply the limit of that sequence:

.

In this sense, taking the limit and taking the standard part are equivalent procedures.

Read more about this topic:  Limit (mathematics)

Famous quotes containing the words limit, standard and/or part:

    There is a limit to the application of democratic methods. You can inquire of all the passengers as to what type of car they like to ride in, but it is impossible to question them as to whether to apply the brakes when the train is at full speed and accident threatens.
    Leon Trotsky (1879–1940)

    As in political revolutions, so in paradigm choice—there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.
    Thomas S. Kuhn (b. 1922)

    Glorious bouquets and storms of applause ... are the trimmings which every artist naturally enjoys. But to move an audience in such a role, to hear in the applause that unmistakable note which breaks through good theatre manners and comes from the heart, is to feel that you have won through to life itself. Such pleasure does not vanish with the fall of the curtain, but becomes part of one’s own life.
    Dame Alice Markova (b. 1910)