Convergence and Fixed Point
A formal definition of convergence can be stated as follows. Suppose as goes from to is a sequence that converges to a fixed point, with for all . If positive constants and exist with
then as goes from to converges to of order, with asymptotic error constant
Given a function with a fixed point, there is a nice checklist for checking the convergence of p.
- 1) First check that p is indeed a fixed point:
- 2) Check for linear convergence. Start by finding . If....
then there is linear convergence | |
series diverges | |
then there is at least linear convergence and maybe something better, the expression should be checked for quadratic convergence |
- 3) If it is found that there is something better than linear the expression should be checked for quadratic convergence. Start by finding If....
then there is quadratic convergence provided that is continuous | |
then there is something even better than quadratic convergence | |
does not exist | then there is convergence that is better than linear but still not quadratic |
Read more about this topic: Limit (mathematics)
Famous quotes containing the words fixed and/or point:
“Museums, museums, museums, object-lessons rigged out to illustrate the unsound theories of archaeologists, crazy attempts to co-ordinate and get into a fixed order that which has no fixed order and will not be co-ordinated! It is sickening! Why must all experience be systematized?... A museum is not a first-hand contact: it is an illustrated lecture. And what one wants is the actual vital touch.”
—D.H. (David Herbert)
“We should have learnt by now that laws and court decisions can only point the way. They can establish criteria of right and wrong. And they can provide a basis for rooting out the evils of bigotry and racism. But they cannot wipe away centuries of oppression and injusticehowever much we might desire it.”
—Hubert H. Humphrey (19111978)