Limit (category Theory) - Definition

Definition

Limits and colimits in a category C are defined by means of diagrams in C. Formally, a diagram of type J in C is a functor from J to C:

F : J → C.

The category J is thought of as index category, and the diagram F is thought of as indexing a collection of objects and morphisms in C patterned on J. The actual objects and morphisms in J are largely irrelevant—only the way in which they are interrelated matters.

One is most often interested in the case where the category J is a small or even finite category. A diagram is said to be small or finite whenever J is.

Read more about this topic:  Limit (category Theory)

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)