Limit (category Theory) - Definition

Definition

Limits and colimits in a category C are defined by means of diagrams in C. Formally, a diagram of type J in C is a functor from J to C:

F : J → C.

The category J is thought of as index category, and the diagram F is thought of as indexing a collection of objects and morphisms in C patterned on J. The actual objects and morphisms in J are largely irrelevant—only the way in which they are interrelated matters.

One is most often interested in the case where the category J is a small or even finite category. A diagram is said to be small or finite whenever J is.

Read more about this topic:  Limit (category Theory)

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)