Definition
Limits and colimits in a category C are defined by means of diagrams in C. Formally, a diagram of type J in C is a functor from J to C:
- F : J → C.
The category J is thought of as index category, and the diagram F is thought of as indexing a collection of objects and morphisms in C patterned on J. The actual objects and morphisms in J are largely irrelevant—only the way in which they are interrelated matters.
One is most often interested in the case where the category J is a small or even finite category. A diagram is said to be small or finite whenever J is.
Read more about this topic: Limit (category Theory)
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)