Levi-Civita Connection - Formal Definition

Formal Definition

Let (M,g) be a Riemannian manifold (or pseudo-Riemannian manifold). Then an affine connection ∇ is called a Levi-Civita connection if

  1. it preserves the metric, i.e., ∇g = 0.
  2. it is torsion-free, i.e., for any vector fields X and Y we have ∇XY − ∇YX =, where is the Lie bracket of the vector fields X and Y.

Condition 1 above is sometimes referred to as compatibility with the metric, and condition 2 is sometimes called symmetry, cf. DoCarmo's text.

Assuming a Levi-Civita connection exists it is uniquely determined. Using conditions 1 and the symmetry of the metric tensor g we find:

By condition 2 the right hand side is equal to

so we find

Since Z is arbitrary, this uniquely determines ∇XY. Conversely, using the last line as a definition one shows that the expression so defined is a connection compatible with the metric, i.e. is a Levi-Civita connection.

Read more about this topic:  Levi-Civita Connection

Famous quotes containing the words formal and/or definition:

    The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.
    Edgar Lee Masters (1869–1950)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)