Compound Lenses
See also: Photographic lens, Doublet (lens), and AchromatSimple lenses are subject to the optical aberrations discussed above. In many cases these aberrations can be compensated for to a great extent by using a combination of simple lenses with complementary aberrations. A compound lens is a collection of simple lenses of different shapes and made of materials of different refractive indices, arranged one after the other with a common axis.
The simplest case is where lenses are placed in contact: if the lenses of focal lengths f1 and f2 are "thin", the combined focal length f of the lenses is given by
Since 1/f is the power of a lens, it can be seen that the powers of thin lenses in contact are additive.
If two thin lenses are separated in air by some distance d (where d is smaller than the focal length of the first lens), the focal length for the combined system is given by
The distance from the second lens to the focal point of the combined lenses is called the back focal length (BFL).
As d tends to zero, the value of the BFL tends to the value of f given for thin lenses in contact.
If the separation distance is equal to the sum of the focal lengths (d = f1+f2), the combined focal length and BFL are infinite. This corresponds to a pair of lenses that transform a parallel (collimated) beam into another collimated beam. This type of system is called an afocal system, since it produces no net convergence or divergence of the beam. Two lenses at this separation form the simplest type of optical telescope. Although the system does not alter the divergence of a collimated beam, it does alter the width of the beam. The magnification of such a telescope is given by
which is the ratio of the input beam width to the output beam width. Note the sign convention: a telescope with two convex lenses (f1 > 0, f2 > 0) produces a negative magnification, indicating an inverted image. A convex plus a concave lens (f1 > 0 > f2) produces a positive magnification and the image is upright.
Read more about this topic: Lens (optics)
Famous quotes containing the words compound and/or lenses:
“Work is a responsibility most adults assume, a burden at times, a complication, but also a challenge that, like children, requires enormous energy and that holds the potential for qualitative, as well as quantitative, rewards. Isnt this the only constructive perspective for women who have no choice but to work? And isnt it a more healthy attitude for women writhing with guilt because they choose to compound the challenges of motherhood with work they enjoy?”
—Melinda M. Marshall (20th century)
“Life is a train of moods like a string of beads, and, as we pass through them, they prove to be many-colored lenses which paint the world their own hue, and each shows only what lies in its focus.”
—Ralph Waldo Emerson (18031882)