Legendre Symbol - Definition

Definition

Let p be an odd prime number. An integer a is a quadratic residue modulo p if it is congruent to a perfect square modulo p and is a quadratic nonresidue modulo p otherwise. The Legendre symbol is a function of a and p defined as follows:


\left(\frac{a}{p}\right) =
\begin{cases}
\;\;\,1 \text{ if } a \text{ is a quadratic residue modulo}\ p
\text{ and } a \not\equiv 0\pmod{p} \\
-1 \text{ if } a \text{ is a quadratic non-residue modulo}\ p\\
\;\;\,0 \text{ if } a \equiv 0 \pmod{p}.
\end{cases}

Legendre's original definition was by means of an explicit formula:

By Euler's criterion, which had been discovered earlier and was known to Legendre, these two definitions are equivalent. Thus Legendre's contribution lay in introducing a convenient notation that recorded quadratic residuosity of a mod p. For the sake of comparison, Gauss used the notation, according to whether a is a residue or a non-residue modulo p.

For typographical convenience, the Legendre symbol is sometimes written as (a|p) or (a/p). The sequence (a|p) for a equal to 0,1,2,... is periodic with period p and is sometimes called the Legendre sequence, with {0,1,−1} values occasionally replaced by {1,0,1} or {0,1,0}.

Read more about this topic:  Legendre Symbol

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)