Relation To Other Measures
The Borel measure agrees with the Lebesgue measure on those sets for which it is defined; however, there are many more Lebesgue-measurable sets than there are Borel measurable sets. The Borel measure is translation-invariant, but not complete.
The Haar measure can be defined on any locally compact group and is a generalization of the Lebesgue measure (Rn with addition is a locally compact group).
The Hausdorff measure is a generalization of the Lebesgue measure that is useful for measuring the subsets of Rn of lower dimensions than n, like submanifolds, for example, surfaces or curves in R³ and fractal sets. The Hausdorff measure is not to be confused with the notion of Hausdorff dimension.
It can be shown that there is no infinite-dimensional analogue of Lebesgue measure.
Read more about this topic: Lebesgue Measure
Famous quotes containing the words relation to, relation and/or measures:
“Among the most valuable but least appreciated experiences parenthood can provide are the opportunities it offers for exploring, reliving, and resolving ones own childhood problems in the context of ones relation to ones child.”
—Bruno Bettelheim (20th century)
“It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.”
—René Descartes (15961650)
“This Government has found occasion to express, in a friendly spirit, but with much earnestness, to the Government of the Czar, its serious concern because of the harsh measures now being enforced against the Hebrews in Russia.”
—Benjamin Harrison (18331901)