Properties
The Lebesgue measure on Rn has the following properties:
- If A is a cartesian product of intervals I1 × I2 × ... × In, then A is Lebesgue measurable and Here, |I| denotes the length of the interval I.
- If A is a disjoint union of countably many disjoint Lebesgue measurable sets, then A is itself Lebesgue measurable and λ(A) is equal to the sum (or infinite series) of the measures of the involved measurable sets.
- If A is Lebesgue measurable, then so is its complement.
- λ(A) ≥ 0 for every Lebesgue measurable set A.
- If A and B are Lebesgue measurable and A is a subset of B, then λ(A) ≤ λ(B). (A consequence of 2, 3 and 4.)
- Countable unions and intersections of Lebesgue measurable sets are Lebesgue measurable. (Not a consequence of 2 and 3, because a family of sets that is closed under complements and disjoint countable unions need not be closed under countable unions: .)
- If A is an open or closed subset of Rn (or even Borel set, see metric space), then A is Lebesgue measurable.
- If A is a Lebesgue measurable set, then it is "approximately open" and "approximately closed" in the sense of Lebesgue measure (see the regularity theorem for Lebesgue measure).
- Lebesgue measure is both locally finite and inner regular, and so it is a Radon measure.
- Lebesgue measure is strictly positive on non-empty open sets, and so its support is the whole of Rn.
- If A is a Lebesgue measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable.
- If A is Lebesgue measurable and x is an element of Rn, then the translation of A by x, defined by A + x = {a + x : a ∈ A}, is also Lebesgue measurable and has the same measure as A.
- If A is Lebesgue measurable and, then the dilation of by defined by is also Lebesgue measurable and has measure
- More generally, if T is a linear transformation and A is a measurable subset of Rn, then T(A) is also Lebesgue measurable and has the measure .
All the above may be succinctly summarized as follows:
- The Lebesgue measurable sets form a σ-algebra containing all products of intervals, and λ is the unique complete translation-invariant measure on that σ-algebra with
The Lebesgue measure also has the property of being σ-finite.
Read more about this topic: Lebesgue Measure
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)