Construction of The Lebesgue Measure
The modern construction of the Lebesgue measure is an application of Carathéodory's extension theorem. It proceeds as follows.
Fix n ∈ N. A box in Rn is a set of the form
where bi ≥ ai, and the product symbol here represents a Cartesian product. The volume vol(B) of this box is defined to be
For any subset A of Rn, we can define its outer measure λ*(A) by:
We then define the set A to be Lebesgue measurable if for every subset S of Rn,
These Lebesgue measurable sets form a σ-algebra, and the Lebesgue measure is defined by λ(A) = λ*(A) for any Lebesgue measurable set A.
The existence of sets that are not Lebesgue measurable is a consequence of a certain set-theoretical axiom, the axiom of choice, which is independent from many of the conventional systems of axioms for set theory. The Vitali theorem, which follows from the axiom, states that there exist subsets of R that are not Lebesgue measurable. Assuming the axiom of choice, non-measurable sets with many surprising properties have been demonstrated, such as those of the Banach–Tarski paradox.
In 1970, Robert M. Solovay showed that the existence of sets that are not Lebesgue measurable is not provable within the framework of Zermelo–Fraenkel set theory in the absence of the axiom of choice (see Solovay's model).
Read more about this topic: Lebesgue Measure
Famous quotes containing the words construction of the, construction of, construction and/or measure:
“When the leaders choose to make themselves bidders at an auction of popularity, their talents, in the construction of the state, will be of no service. They will become flatterers instead of legislators; the instruments, not the guides, of the people.”
—Edmund Burke (17291797)
“The construction of life is at present in the power of facts far more than convictions.”
—Walter Benjamin (18921940)
“No real vital character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the authors personality, developing by internal necessity as much as by external addition.”
—T.S. (Thomas Stearns)
“I measure myself
Against a tall tree.
I find that I am much taller,
For I reach right up to the sun,
With my eye....”
—Wallace Stevens (18791955)