Leap Second - History

History

About 140 AD Ptolemy sexagesimally subdivided both the mean solar day and the true solar day to at least six places after the sexagesimal point, and he used simple fractions of both the equinoctial hour and the seasonal hour, none of which resemble the modern second. Muslim scholars, including al-Biruni in 1000, subdivided the mean solar day into 24 equinoctial hours, each of which was subdivided sexagesimally, that is into the units of minute, second, third, fourth and fifth, creating the modern second as 1⁄60 of 1⁄60 of 1⁄24 = 1⁄86400 of the mean solar day in the process. With this definition, the second was proposed in 1874 as the base unit of time in the CGS system of units. Soon afterwards Simon Newcomb and others discovered that Earth's rotation period varied irregularly, so in 1952 the International Astronomical Union (IAU) defined the second as a fraction of the sidereal year. Because the tropical year was considered more fundamental than the sidereal year, in 1955 the IAU redefined the second as the fraction 1⁄31,556,925.9747 of the 1900.0 mean tropical year, which was adopted in 1956 by the International Committee for Weights and Measures and in 1960 by the General Conference on Weights and Measures, becoming a part of the International System of Units (SI).

Eventually this definition too was found to be inadequate for precise time measurements, so in 1967 the SI second was again redefined as 9,192,631,770 periods of the radiation emitted by a caesium-133 atom in the transition between the two hyperfine levels of its ground state. That value agreed to 1 part in 1010 with the astronomical (ephemeris) second then in use. It was also close to 1⁄86400 of the mean solar day as averaged between 1750 and 1892.

However, for the past several centuries the length of the mean solar day has been increasing by about 1.7 ms per century, on the average. By 1961 the mean solar day was already a millisecond or two longer than 86400 SI seconds. Therefore, time standards that change the date after precisely 86400 SI seconds, such the International Atomic Time (TAI), will get increasingly ahead of time standards tied to the mean solar day, such as Greenwich Mean Time (GMT).

When the Coordinated Universal Time standard was instituted in 1961, based on atomic clocks, it was felt necessary to maintain agreement with the GMT time of day, which until then had been the reference for broadcast time services. Thus, from 1961 to 1971, the rate of (some) atomic clocks was constantly slowed to remain synchronised with GMT. During that period, therefore, the "seconds" of broadcast services were actually slightly longer than the SI second and closer to the GMT seconds.

In 1972 the leap-second system was introduced so that the broadcast UTC seconds could be made exactly equal to the standard SI second, while still maintaining the UTC time of day and changes of UTC date synchronized with those of UT1 (the solar time standard that superseded GMT). By then the UTC clock was already 10 seconds behind TAI, which had been synchronized with UT1 in 1958 but had been counting true SI seconds since then. After 1972, both clocks have been ticking in SI seconds, so the difference between their readouts at any time is 10 seconds plus the total number of leap seconds that have been applied to UTC (35 seconds in July 2012).

Read more about this topic:  Leap Second

Famous quotes containing the word history:

    A country grows in history not only because of the heroism of its troops on the field of battle, it grows also when it turns to justice and to right for the conservation of its interests.
    Aristide Briand (1862–1932)

    He wrote in prison, not a History of the World, like Raleigh, but an American book which I think will live longer than that. I do not know of such words, uttered under such circumstances, and so copiously withal, in Roman or English or any history.
    Henry David Thoreau (1817–1862)