Law of Sines

In trigonometry, the law of sines (also known as the sine law, sine formula, or sine rule) is an equation relating the lengths of the sides of an arbitrary triangle to the sines of its angles. According to the law,

where a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite angles (see the figure to the right). These fractions are equal to the diameter of the triangle's circumcircle. Sometimes the law is stated using the reciprocal in this equation:

The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the formula gives two possible values for the enclosed angle, leading to an ambiguous case.

The law of sines is one of two trigonometric equations commonly applied to find lengths and angles in a general triangle, with the other being the law of cosines.

Read more about Law Of Sines:  Examples, Numeric Problems, Some Applications, The Ambiguous Case, Relation To The Circumcircle, Spherical Case, Hyperbolic Case, Unified Formulation, History, Derivation, A Law of Sines For Tetrahedra

Famous quotes containing the words law of, law and/or sines:

    From the war of nature, from famine and death, the most exalted object which we are capable of conceiving, namely, the production of the higher animals, directly follows. There is grandeur in this view of life, with its several powers, having been breathed into a few forms or into one; and that, whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.
    Charles Darwin (1809–1882)

    The law is equal before all of us; but we are not all equal before the law. Virtually there is one law for the rich and another for the poor, one law for the cunning and another for the simple, one law for the forceful and another for the feeble, one law for the ignorant and another for the learned, one law for the brave and another for the timid, and within family limits one law for the parent and no law at all for the child.
    George Bernard Shaw (1856–1950)

    In mathematics he was greater
    Than Tycho Brahe, or Erra Pater:
    For he, by geometric scale,
    Could take the size of pots of ale;
    Resolve, by sines and tangents straight,
    If bread and butter wanted weight;
    And wisely tell what hour o’ th’ day
    The clock doth strike, by algebra.
    Samuel Butler (1612–1680)