Lateral Line - Anatomy

Anatomy

The major unit of functionality of the lateral line is the neuromast. The neuromast is a mechanoreceptive organ which allows the sensing of mechanical changes in water. There are two main varieties of neuromasts located in animals, canal neuromasts and superficial or freestanding neuromasts. Superficial neuromasts are located externally on the surface of the body, while canal neuromasts are located along the lateral lines in subdermal, fluid filled canals. Each neuromast consists of receptive hair cells whose tips are covered by a flexible and jellylike cupula. Hair cells typically possess both glutamatergic afferent connections and efferent connections using acetylcholine. The receptive hair cells are modified epithelial cells and typically possess bundles of 40-50 microvilli "hairs" which function as the mechanoreceptors. These bundles are organized in rough "staircases" of hairs of increasing length order. This use of mechanosensitive hairs is homologous to the functioning of hair cells in the auditory and vestibular systems, indicating a close link between these systems.

Hair cells utilize a system of transduction that uses rate coding in order to transmit the directionality of a stimulus. Hair cells of the lateral line system produce a constant, tonic rate of firing. As mechanical motion is transmitted through water to the neuromast, the cupula bends and is displaced. Varying in magnitude with the strength of the stimulus, shearing movement and deflection of the hairs is produced, either toward the longest hair or away from it. This results in a shift in the cell’s ionic permeability, resulting from changes to open ion channels caused by the deflection of the hairs. Deflection towards the longest hair results in depolarization of the hair cell, increased neurotransmitter release at the excitatory afferent synapse, and a higher rate of signal transduction. Deflection towards the shorter hair has the opposite effect, hyperpolarizing the hair cell and producing a decreased rate of neurotransmitter release. These electrical impulses are then transmitted along afferent lateral neurons to the brain.

While both varieties of neuromasts utilize this method of transduction, the specialized organization of superficial and canal neuromasts allow them different mechanoreceptive capacities. Located at the surface of an animal’s skin, superficial organs are exposed more directly to the external environment. Though they these organs possess the standard "staircase" shaped hair bundles, overall the organization of the bundles within the organs is seemingly haphazard, incorporating various shapes and sizes of microvilli within bundles. This suggests a wide range of detection, potentially indicating a function of broad detection to determine the presence and magnitude of deflection caused by motion in the surrounding water. In contrast, the structure of canal organs allow canal neuromasts to be organized into a network system that allows more sophisticated mechanoreception, such as the detection of pressure differentials. As current moves across the pores of a canal, a pressure differential is created over the pores. As pressure on one pore exceeds that of another pore, the differential pushes down on the canal and causes flow in the canal fluid. This moves the cupula of the hair cells in the canal, resulting in a directional deflection of the hairs corresponding to the direction of the flow. This method allows the translation of pressure information into directional deflections which can be received and transduced by hair cells.

Read more about this topic:  Lateral Line

Famous quotes containing the word anatomy:

    I love to see, when leaves depart,
    The clear anatomy arrive,
    Roy Campbell (1902–1957)

    But a man must keep an eye on his servants, if he would not have them rule him. Man is a shrewd inventor, and is ever taking the hint of a new machine from his own structure, adapting some secret of his own anatomy in iron, wood, and leather, to some required function in the work of the world. But it is found that the machine unmans the user. What he gains in making cloth, he loses in general power.
    Ralph Waldo Emerson (1803–1882)

    Man is a shrewd inventor, and is ever taking the hint of a new machine from his own structure, adapting some secret of his own anatomy in iron, wood, and leather, to some required function in the work of the world.
    Ralph Waldo Emerson (1803–1882)