Systematically Creating Ever Faster Increasing Sequences
Given a strictly increasing integer sequence/function (n≥1) we can produce a faster growing sequence (where the superscript n denotes the nth functional power). This can be repeated any number of times by letting, each sequence growing much faster than the one before it. Then we could define, which grows much faster than any for finite k (here ω is the first infinite ordinal number, representing the limit of all finite numbers k). This is the basis for the fast-growing hierarchy of functions, in which the indexing subscript is extended to ever-larger ordinals.
For example, starting with f0(n) = n + 1:
- f1(n) = f0n(n) = n + n = 2n
- f2(n) = f1n(n) = 2nn > (2 ↑) n for n ≥ 2 (using Knuth up-arrow notation)
- f3(n) = f2n(n) > (2 ↑)n n ≥ 2 ↑2 n for n ≥ 2.
- fk+1(n) > 2 ↑k n for n ≥ 2, k < ω.
- fω(n) = fn(n) > 2 ↑n - 1 n > 2 ↑n − 2 (n + 3) − 3 = A(n, n) for n ≥ 2, where A is the Ackermann function (of which fω is a unary version).
- fω+1(64) > fω64(6) > Graham's number (= g64 in the sequence defined by g0 = 4, gk+1 = 3 ↑gk 3).
- This follows by noting fω(n) > 2 ↑n - 1 n > 3 ↑n - 2 3 + 2, and hence fω(gk + 2) > gk+1 + 2.
- fω(n) > 2 ↑n - 1 n = (2 → n → n-1) = (2 → n → n-1 → 1) (using Conway chained arrow notation)
- fω+1(n) = fωn(n) > (2 → n → n-1 → 2) (because if gk(n) = X → n → k then X → n → k+1 = gkn(1))
- fω+k(n) > (2 → n → n-1 → k+1) > (n → n → k)
- fω2(n) = fω+n(n) > (n → n → n) = (n → n → n→ 1)
- fω2+k(n) > (n → n → n → k)
- fω3(n) > (n → n → n → n)
- fωk(n) > (n → n → ... → n → n) (Chain of k+1 n's)
- fω2(n) = fωn(n) > (n → n → ... → n → n) (Chain of n+1 n's)
Read more about this topic: Large Numbers
Famous quotes containing the words creating, faster and/or increasing:
“No one is ahead of his time, it is only that the particular variety of creating his time is the one that his contemporaries who are also creating their own time refuse to accept.... For a very long time everybody refuses and then almost without a pause almost everybody accepts. In the history of the refused in the arts and literature the rapidity of the change is always startling.”
—Gertrude Stein (18741946)
“When words fail us or, quite the opposite, when they rush from our mouths faster than we would like, we can console ourselves that if no single moment is going to define our relationship with a child, neither can a single lapse of good judgment or patience destroy it.”
—Cathy Rindner Tempelsman (20th century)
“As the twentieth century ends, commerce and culture are coming closer together. The distinction between life and art has been eroded by fifty years of enhanced communications, ever-improving reproduction technologies and increasing wealth.”
—Stephen Bayley (b. 1951)