Langlands Program - Current Status

Current Status

The Langlands conjectures for GL(1, K) follow from (and are essentially equivalent to) class field theory.

Langlands proved the Langlands conjectures for groups over the archimedean local fields R and C by giving the Langlands classification of their irreducible representations.

Lusztig's classification of the irreducible representations of groups of Lie type over finite fields can be considered an analogue of the Langlands conjectures for finite fields.

Andrew Wiles' proof of modularity of semi-stable elliptic curves over rationals can be viewed as an exercise in the Langlands conjectures. Unfortunately, his method cannot be extended to arbitrary number fields.

The Langlands conjecture for GL(2, Q) still remains unproved.

Laurent Lafforgue proved Lafforgue's theorem verifying the Langlands conjectures for the general linear group GL(n, K) for function fields K. This work continued earlier investigations by Vladimir Drinfel'd, who proved the case GL(2, K)

Read more about this topic:  Langlands Program

Famous quotes containing the words current and/or status:

    You are the current of the frozen stream,
    Shadow invisible, ambushed and vigilant flame.
    Allen Tate (1899–1979)

    Recent studies that have investigated maternal satisfaction have found this to be a better prediction of mother-child interaction than work status alone. More important for the overall quality of interaction with their children than simply whether the mother works or not, these studies suggest, is how satisfied the mother is with her role as worker or homemaker. Satisfied women are consistently more warm, involved, playful, stimulating and effective with their children than unsatisfied women.
    Alison Clarke-Stewart (20th century)