In mathematics, Landau's function g(n), named after Edmund Landau, is defined for every natural number n to be the largest order of an element of the symmetric group Sn. Equivalently, g(n) is the largest least common multiple (lcm) of any partition of n, or the maximum number of times a permutation of n elements can be recursively applied to itself before it returns to its starting sequence.
For instance, 5 = 2 + 3 and lcm(2,3) = 6. No other partition of 5 yields a bigger lcm, so g(5) = 6. An element of order 6 in the group S5 can be written in cycle notation as (1 2) (3 4 5).
The integer sequence g(0) = 1, g(1) = 1, g(2) = 2, g(3) = 3, g(4) = 4, g(5) = 6, g(6) = 6, g(7) = 12, g(8) = 15, ... (sequence A000793 in OEIS) is named after Edmund Landau, who proved in 1902 that
(where ln denotes the natural logarithm).
The statement that
for all sufficiently large n, where Li−1 denotes the inverse of the logarithmic integral function, is equivalent to the Riemann hypothesis.
It can be shown that:
Famous quotes containing the word function:
“The intension of a proposition comprises whatever the proposition entails: and it includes nothing else.... The connotation or intension of a function comprises all that attribution of this predicate to anything entails as also predicable to that thing.”
—Clarence Lewis (18831964)