Lambert Series - Current Usage

Current Usage

In the literature we find Lambert series applied to a wide variety of sums. For example, since is a polylogarithm function, we may refer to any sum of the form

as a Lambert series, assuming that the parameters are suitably restricted. Thus

12\left(\sum_{n=1}^{\infty} n^2 \, \mathrm{Li}_{-1}(q^n)\right)^{\!2} = \sum_{n=1}^{\infty}
n^2 \,\mathrm{Li}_{-5}(q^n) -
\sum_{n=1}^{\infty} n^4 \, \mathrm{Li}_{-3}(q^n),

which holds for all complex q not on the unit circle, would be considered a Lambert series identity. This identity follows in a straightforward fashion from some identities published by the Indian mathematician S. Ramanujan. A very thorough exploration of Ramanujan's works can be found in the works by Bruce Berndt.

Read more about this topic:  Lambert Series

Famous quotes containing the words current and/or usage:

    A reaction: a boat which is going against the current but which does not prevent the river from flowing on.
    Victor Hugo (1802–1885)

    Girls who put out are tramps. Girls who don’t are ladies. This is, however, a rather archaic usage of the word. Should one of you boys happen upon a girl who doesn’t put out, do not jump to the conclusion that you have found a lady. What you have probably found is a lesbian.
    Fran Lebowitz (b. 1951)