Extensions of Lagrangian Mechanics
The Hamiltonian, denoted by H, is obtained by performing a Legendre transformation on the Lagrangian, which introduces new variables, canonically conjugate to the original variables. This doubles the number of variables, but makes differential equations first order. The Hamiltonian is the basis for an alternative formulation of classical mechanics known as Hamiltonian mechanics. It is a particularly ubiquitous quantity in quantum mechanics (see Hamiltonian (quantum mechanics)).
In 1948, Feynman discovered the path integral formulation extending the principle of least action to quantum mechanics for electrons and photons. In this formulation, particles travel every possible path between the initial and final states; the probability of a specific final state is obtained by summing over all possible trajectories leading to it. In the classical regime, the path integral formulation cleanly reproduces Hamilton's principle, and Fermat's principle in optics.
Read more about this topic: Lagrangian Mechanics
Famous quotes containing the words extensions of, extensions and/or mechanics:
“If we focus exclusively on teaching our children to read, write, spell, and count in their first years of life, we turn our homes into extensions of school and turn bringing up a child into an exercise in curriculum development. We should be parents first and teachers of academic skills second.”
—Neil Kurshan (20th century)
“If we focus exclusively on teaching our children to read, write, spell, and count in their first years of life, we turn our homes into extensions of school and turn bringing up a child into an exercise in curriculum development. We should be parents first and teachers of academic skills second.”
—Neil Kurshan (20th century)
“It is only the impossible that is possible for God. He has given over the possible to the mechanics of matter and the autonomy of his creatures.”
—Simone Weil (19091943)