Lagrangian Mechanics - Extensions of Lagrangian Mechanics

Extensions of Lagrangian Mechanics

The Hamiltonian, denoted by H, is obtained by performing a Legendre transformation on the Lagrangian, which introduces new variables, canonically conjugate to the original variables. This doubles the number of variables, but makes differential equations first order. The Hamiltonian is the basis for an alternative formulation of classical mechanics known as Hamiltonian mechanics. It is a particularly ubiquitous quantity in quantum mechanics (see Hamiltonian (quantum mechanics)).

In 1948, Feynman discovered the path integral formulation extending the principle of least action to quantum mechanics for electrons and photons. In this formulation, particles travel every possible path between the initial and final states; the probability of a specific final state is obtained by summing over all possible trajectories leading to it. In the classical regime, the path integral formulation cleanly reproduces Hamilton's principle, and Fermat's principle in optics.

Read more about this topic:  Lagrangian Mechanics

Famous quotes containing the words extensions of, extensions and/or mechanics:

    The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we don’t like what we see, we feel angry at the reflection.
    Elaine Heffner (20th century)

    If we focus exclusively on teaching our children to read, write, spell, and count in their first years of life, we turn our homes into extensions of school and turn bringing up a child into an exercise in curriculum development. We should be parents first and teachers of academic skills second.
    Neil Kurshan (20th century)

    the moderate Aristotelian city
    Of darning and the Eight-Fifteen, where Euclid’s geometry
    And Newton’s mechanics would account for our experience,
    And the kitchen table exists because I scrub it.
    —W.H. (Wystan Hugh)