Proof of Lagrange's Theorem
This can be shown using the concept of left cosets of H in G. The left cosets are the equivalence classes of a certain equivalence relation on G and therefore form a partition of G. Specifically, x and y in G are related if and only if there exists h in H such that x = yh. If we can show that all cosets of H have the same number of elements, then each coset of H has precisely |H| elements. We are then done since the order of H times the number of cosets is equal to the number of elements in G, thereby proving that the order of H divides the order of G. Now, if aH and bH are two left cosets of H, we can define a map f : aH → bH by setting f(x) = ba−1x. This map is bijective because its inverse is given by
This proof also shows that the quotient of the orders |G| / |H| is equal to the index (the number of left cosets of H in G). If we write this statement as
then, seen as a statement about cardinal numbers, it is equivalent to the Axiom of choice.
Read more about this topic: Lagrange's Theorem (group Theory)
Famous quotes containing the words proof of, proof and/or theorem:
“There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.”
—Herman Melville (18191891)
“If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nations greatest strength, will tell their own story to the world.”
—Susan B. Anthony (18201906)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)