Proof of Lagrange's Theorem
This can be shown using the concept of left cosets of H in G. The left cosets are the equivalence classes of a certain equivalence relation on G and therefore form a partition of G. Specifically, x and y in G are related if and only if there exists h in H such that x = yh. If we can show that all cosets of H have the same number of elements, then each coset of H has precisely |H| elements. We are then done since the order of H times the number of cosets is equal to the number of elements in G, thereby proving that the order of H divides the order of G. Now, if aH and bH are two left cosets of H, we can define a map f : aH → bH by setting f(x) = ba−1x. This map is bijective because its inverse is given by
This proof also shows that the quotient of the orders |G| / |H| is equal to the index (the number of left cosets of H in G). If we write this statement as
then, seen as a statement about cardinal numbers, it is equivalent to the Axiom of choice.
Read more about this topic: Lagrange's Theorem (group Theory)
Famous quotes containing the words proof of, proof and/or theorem:
“The thing with Catholicism, the same as all religions, is that it teaches what should be, which seems rather incorrect. This is what should be. Now, if youre taught to live up to a what should be that never existedonly an occult superstition, no proof of this should beMthen you can sit on a jury and indict easily, you can cast the first stone, you can burn Adolf Eichmann, like that!”
—Lenny Bruce (19251966)
“Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other twoa proof of the decline of that country.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)