Lagrange's Theorem (group Theory) - History

History

Lagrange did not prove Lagrange's theorem in its general form. He stated, in his article Réflexions sur la résolution algébrique des équations, that if a polynomial in n variables has its variables permuted in all n ! ways, the number of different polynomials that are obtained is always a factor of n !. (For example if the variables x, y, and z are permuted in all 6 possible ways in the polynomial x + y - z then we get a total of 3 different polynomials: x + yz, x + z - y, and y + zx. Note that 3 is a factor of 6.) The number of such polynomials is the index in the symmetric group Sn of the subgroup H of permutations that preserve the polynomial. (For the example of x + yz, the subgroup H in S3 contains the identity and the transposition (xy).) So the size of H divides n !. With the later development of abstract groups, this result of Lagrange on polynomials was recognized to extend to the general theorem about finite groups which now bears his name.

Lagrange did not prove his theorem; all he did, essentially, was to discuss some special cases. The first complete proof of the theorem was provided by Abbati and published in 1803.

Read more about this topic:  Lagrange's Theorem (group Theory)

Famous quotes containing the word history:

    We aspire to be something more than stupid and timid chattels, pretending to read history and our Bibles, but desecrating every house and every day we breathe in.
    Henry David Thoreau (1817–1862)

    Those who weep for the happy periods which they encounter in history acknowledge what they want; not the alleviation but the silencing of misery.
    Albert Camus (1913–1960)