Lagrange's Theorem (group Theory) - History

History

Lagrange did not prove Lagrange's theorem in its general form. He stated, in his article Réflexions sur la résolution algébrique des équations, that if a polynomial in n variables has its variables permuted in all n ! ways, the number of different polynomials that are obtained is always a factor of n !. (For example if the variables x, y, and z are permuted in all 6 possible ways in the polynomial x + y - z then we get a total of 3 different polynomials: x + yz, x + z - y, and y + zx. Note that 3 is a factor of 6.) The number of such polynomials is the index in the symmetric group Sn of the subgroup H of permutations that preserve the polynomial. (For the example of x + yz, the subgroup H in S3 contains the identity and the transposition (xy).) So the size of H divides n !. With the later development of abstract groups, this result of Lagrange on polynomials was recognized to extend to the general theorem about finite groups which now bears his name.

Lagrange did not prove his theorem; all he did, essentially, was to discuss some special cases. The first complete proof of the theorem was provided by Abbati and published in 1803.

Read more about this topic:  Lagrange's Theorem (group Theory)

Famous quotes containing the word history:

    The history of our era is the nauseating and repulsive history of the crucifixion of the procreative body for the glorification of the spirit.
    —D.H. (David Herbert)

    It may be well to remember that the highest level of moral aspiration recorded in history was reached by a few ancient Jews—Micah, Isaiah, and the rest—who took no count whatever of what might not happen to them after death. It is not obvious to me why the same point should not by and by be reached by the Gentiles.
    Thomas Henry Huxley (1825–95)

    Psychology keeps trying to vindicate human nature. History keeps undermining the effort.
    Mason Cooley (b. 1927)