Lagrange's Theorem (group Theory) - History

History

Lagrange did not prove Lagrange's theorem in its general form. He stated, in his article Réflexions sur la résolution algébrique des équations, that if a polynomial in n variables has its variables permuted in all n ! ways, the number of different polynomials that are obtained is always a factor of n !. (For example if the variables x, y, and z are permuted in all 6 possible ways in the polynomial x + y - z then we get a total of 3 different polynomials: x + yz, x + z - y, and y + zx. Note that 3 is a factor of 6.) The number of such polynomials is the index in the symmetric group Sn of the subgroup H of permutations that preserve the polynomial. (For the example of x + yz, the subgroup H in S3 contains the identity and the transposition (xy).) So the size of H divides n !. With the later development of abstract groups, this result of Lagrange on polynomials was recognized to extend to the general theorem about finite groups which now bears his name.

Lagrange did not prove his theorem; all he did, essentially, was to discuss some special cases. The first complete proof of the theorem was provided by Abbati and published in 1803.

Read more about this topic:  Lagrange's Theorem (group Theory)

Famous quotes containing the word history:

    It is my conviction that women are the natural orators of the race.
    Eliza Archard Connor, U.S. suffragist. As quoted in History of Woman Suffrage, vol. 4, ch. 9, by Susan B. Anthony and Ida Husted Harper (1902)

    The history of mankind interests us only as it exhibits a steady gain of truth and right, in the incessant conflict which it records between the material and the moral nature.
    Ralph Waldo Emerson (1803–1882)

    Every member of the family of the future will be a producer of some kind and in some degree. The only one who will have the right of exemption will be the mother ...
    Ruth C. D. Havens, U.S. suffragist. As quoted in History of Woman Suffrage, vol. 4, ch. 13, by Susan B. Anthony and Ida Husted Harper (1902)