Existence of Subgroups of Given Order
Lagrange's theorem raises the converse question as to whether every divisor of the order of a group is the order of some subgroup. This does not hold in general: given a finite group G and a divisor d of |G|, there does not necessarily exist a subgroup of G with order d. The smallest example is the alternating group G = A4, which has 12 elements but no subgroup of order 6. A CLT group is a finite group with the property that for every divisor of the order of the group, there is a subgroup of that order. It is known that a CLT group must be solvable and that every supersolvable group is a CLT group: however there exist solvable groups that are not CLT and CLT groups that are not supersolvable.
There are partial converses to Lagrange's theorem. For general groups, Cauchy's theorem guarantees the existence of an element, and hence of a cyclic subgroup, of order any prime dividing the group order; Sylow's theorem extends this to the existence of a subgroup of order equal to the maximal power of any prime dividing the group order. For solvable groups, Hall's theorems assert the existence of a subgroup of order equal to any unitary divisor of the group order (that is, a divisor coprime to its cofactor).
Read more about this topic: Lagrange's Theorem (group Theory)
Famous quotes containing the words existence of, existence and/or order:
“When I think of God, when I think of him as existent, and when I believe him to be existent, my idea of him neither increases nor diminishes. But as it is certain there is a great difference betwixt the simple conception of the existence of an object, and the belief of it, and as this difference lies not in the parts or composition of the idea which we conceive; it follows, that it must lie in the manner in which we conceive it.”
—David Hume (17111776)
“It would strike me as ridiculous to want to doubt the existence of Napoleon; but if someone doubted the existence of the earth 150 years ago, perhaps I should be more willing to listen, for now he is doubting our whole system of evidence.”
—Ludwig Wittgenstein (18891951)
“It seems only yesterday that we saw
The movie with the cows in it
And turned to one at your side, who burped
As morning saw a new garnet-and-pea-green order propose
Itself out of the endless bathos, like science-fiction lumps.”
—John Ashbery (b. 1927)